Units & Dimensions. SI units & U.S. Customary units.

يوجد للتصميم فى مصر نوعان من الوحدات:

Ton, Kg, m & cm و نستخدم فيه Metric System (System International) و نستخدم فيه (S I) و هو حاليا النظام العالمي (System International) و يوجد نظام ثالث غير مستخدم في مصر لكن يستخدم في أوربا و أمريكا (British units or U.S. Customary units.)

 $Kg = 9.81 N \simeq 10.0 N$ ton=9.81KN $\simeq 10.0 kN$

للتحويل من <u>Metric System</u> الى S I الى

و الجدول التالي يوضح كيفيه التحويل من النظام Metric System الى SI مع أمثله لتوضيح ذلك

	Metric System	S I
Concentrated	Kilogram (Kg)	<i>Newton</i> (N)
Load	1 Kg ≃	10 N
	Ton (t)	kilo Newton (KN)
	1 ton ≃	10 kN
Length	meter (M)	<i>meter</i> (M)
	centimeter (CM)	<i>millimeter</i> (MM)
	1 cm 🗕	10 mm
Distributed Load	<i>W</i> t/m` <u> <u> </u> </u>	<i>W</i> kN/m` <i>L</i>
(W)	<i>₩</i> (t/m`)	<i>₩</i> (kN/m`)
	1 t/m`=	10 kN/m`

	Metric System	S I
Bending Moment	M	M
(<u>M</u>)	عند حساب الاحمال (t.m) M (t.m) في معادلات التصميم (Kg.cm) M	
		لتحويل قيمه العزم من (kN.m) الى (N.mm) يتم ضرب قيمه العزم فى 10 ⁶
	1 t.m. = 10 1 Kg.cm = 100	
Dimensions of sections.		
	b, d & t (m) عند حساب الاحمال b, d & t (m)	$oldsymbol{b}, oldsymbol{d}$ $\& t$ (m) عند حساب الاحمال $oldsymbol{b}, oldsymbol{d}$ $\& t$ (mm) فى معادلات التصميم
Area of	cm ²	mm ²
Steel Bars (A _s)	1.0 cm^2 EX. $1 \not = 16 \simeq 2.01 \text{ cm}^2$	$^{2} = 100 \text{ mm}^{2}$ $^{2} \simeq 201 \text{ mm}^{2}$
Distributed	t∖m²	kN∖m²
Load at m ²	$1 \text{ t/m}^2 =$ <i>EX. L.L.</i> = 0.20 t/m ² = <i>EX. F.C.</i> = 0.15 t/m ² =	

	Metric System	S I
Stress	kg\cm ²	N\mm ² = MPa = Mega Pascal
	<mark>1 kg∖cm²</mark> -	≤ 0.10 N\mm ²
	EX. $\mathbf{f}_{cu} = 250$ kg\cm ² =	≃ 25 N∖mm ²
	<i>EX.</i> f _y = 3600 kg\cm ² =	<mark>≍ 360</mark> N∖mm ²
density	t\m ³	kN∖m³
	t\m³ =	≤ 10.0 kN\m ³
	EX. $\delta_c = 2.50 \text{ t/m}^3 =$	≃ <i>25.0</i> kN∖m³
	EX. $\delta_{wall} = 1.80 \text{ t/m}^3 =$	≃ <i>18.0</i> kN\m ³
modules of	For Concrete $E_{o} = 14000 \sqrt{f}$ (kg\cm ²)	For Concrete $E_c = 4400 \sqrt{f_{cu}} (N/mm^2)$
(<u>E</u>)	For Steel	For Steel $E_s = 2 \times 10^{5}$ (N\mm ²)
المقاومه المميزه للخرسانه	f_{cu} (kg∖cm²)	f_{cu} (N\mm ²) = (MPa)
chrasaristics strength (fou)	200 250 300 350 400 450	20 25 30 35 40 45
اجعاد الخضوع أو اجعاد الضمان	f _y (kg∖cm²)	\mathbf{f}_{y} (N\mm ²) = (MPa)
للحديد yield stress	st. 24\35 $f_y = 2400$ (kg\cm ²)	st. 240\350 $f_y = 240 (N m^2)$
or proof stress	st. 36\52 f y = 3600 (kg\cm ²)	st. 360\520 $f_y = 360 (N m^2)$
(f _y)		st. 400\600 $f_y = 400 (N m^2)$

قوانين تصميم القطاعات بوحدات SI & Metric System

L.S.D.M. ملحوظه: تصميم القطاعات في هذه الملفات بطريقه حالات الحدود Limits States Design Method

	Metric System	S I
Design of section subjected to	$M_{U,L} = 0.67 \frac{\mathbf{f}_{ou}}{\mathbf{z}} a b \left(\frac{d}{d} - \frac{a}{2} \right)$	
Bending Moment using First Principles		
- ···· 1 ···	Where: a,b&d (cm)	Where: a,b&d (mm)
		$\begin{array}{c} A_s \& A_c (mm^2) \\ \mathbf{f}_{cu} \& \mathbf{f}_y (N \backslash mm^2) \\ M_{U.L.} (mm.N) = M_{U.L.} (m.kN) \times 10 \end{array}$
	$A_{s \min} = \frac{1.1}{f_y} A_c$	$A_{s \min} = \frac{11}{f_y} A_c$
Design of section subjected to Bending Moment	$d = C_{1} \sqrt{\frac{M_{U.L.}}{\mathbf{f}_{cu} b}}$ $A_{s} = \frac{M_{U.L.}}{J \mathbf{f}_{y} d}$	
using Charts C1&J Chatr		
	Where:	Where:
	b & d (cm)	b & d (mm)
	$A_s \& A_c (\text{cm}^2)$	$A_s \& A_c (mm^2)$
	$\mathbf{f}_{cu} \& \mathbf{f}_{y} (Kg \subset m^{2})$	$\mathbf{f}_{cu} \& \mathbf{f}_{y} (N m^{2})$
		$M_{U.L.}(\text{mm.N}) = M_{U.L.}(\text{m.kN}) \times 10^6$
	$A_{s_{min.}} = \frac{1.1}{f_y} A_c$	$A_{s_{min.}} = \frac{11}{f_y} A_c$

	Metric System	SI
Design of section	$P_{U.L.=0.35A_{c}}$	f cu + 0.67 A s f y
subjected to Compression Force only	Where: $P_{v.L.}$ (Kg) $A_c & A_s$ (cm ²) $f_{cu} & f_y$ (Kg\cm ²)	Where: $P_{v.L.}$ (N) $A_c & A_s$ (mm ²) $f_{cu} & f_y$ (N\mm ²)
Design of section subjected to	$A_s = \frac{T}{\mathbf{f}_y}$	
Tension Force only	$A_c \simeq (20)$	$\rightarrow 40) A_s$
	Where:	Where:
	Т _{U.L.} (Kg)	Τ _{υ.L.} (N)
	$A_c \& A_s$ (cm ²)	$A_c \& A_s$ (mm ²)
	f y (Kg\cm ²)	f y (N∖mm ²)
Design of section subjected to Compression Force	$e = \frac{M_{U.L.}}{P_{U.L.}}$ $e_s = e + \frac{1}{2}$	~
& Bending Monent	$M_{su} = P_{U.L.} \times e_s$	
M _{U.L.} & P _{U.L.} Tension Failure	$A_{s} = \frac{M_{su}}{J \mathbf{f}_{y} d} - \frac{P_{U.L.}}{\mathbf{f}_{y}/\mathbf{\delta}_{s}}$	
	Where:	Where:
	ℓ , e ₅, c , d & t (cm)	e,es,c,d&t (mm)
	<i>P</i> _{<i>U.L.</i>} (Kg)	<i>P_{U.L.}</i> (N)
	$M_{su}(\text{cm.Kg}) = M_{su}(\text{m.t}) \times 10^5$	$M_{su}(\text{mm.N}) = M_{su}(\text{m.kN}) \times 10^6$
	<mark>f</mark> y (Kg∖cm²)	f ℊ (N∖mm²)
	A_{s} (cm ²)	A_s (mm ²)

	Metric System	SI
Design of section subjected to	$\frac{P_{U.L.}}{\mathbf{f}_{cu} \mathbf{b} \mathbf{t}} , \frac{M_{U.L.}}{\mathbf{f}_{cu} \mathbf{b} \mathbf{t}^2}$	$\frac{P_{U.L.}}{\mathbf{f}_{cu} \mathbf{b} \mathbf{t}} , \frac{M_{U.L.}}{\mathbf{f}_{cu} \mathbf{b} \mathbf{t}^2}$
Compression Force & Bending Monent	$\boldsymbol{\mu} = \boldsymbol{\rho} \times \mathbf{f}_{cu} \times 10^{-5}$	$\boldsymbol{\mu} = \boldsymbol{\rho} \times \mathbf{f}_{cu} \times 10^{-4}$
$M_{U_{*}L_{*}} & P_{U_{*}L_{*}}$	$A_s = \mu d t$	$A_s = \mu d t$
	$A_s = \mathbf{\alpha} A_s$	$A_s = \alpha A_s$
Compression Failure		Where:
using	b & t (cm)	b & t (mm)
Interaction Diagram		$P_{U.L.}$ (N)
	$M_{U.L.}$ (cm.Kg) = $M_{U.L.}$ (m.t) × 10 ²	$M_{U.L.}(\text{mm.N}) = M_{U.L.}(\text{kN.m}) \times 10^6$
	A_s (cm ²)	A_s (mm ²)
	$\mathbf{f}_{cu} \& \mathbf{f}_{y} (Kg Cm^{2})$	$\mathbf{f}_{cu} \& \mathbf{f}_{y} (N m^{2})$
Check Shear	$\boldsymbol{q}_{\boldsymbol{u}} = \frac{\boldsymbol{Q}_{\boldsymbol{U}.\boldsymbol{L}}}{\boldsymbol{b} \boldsymbol{d}}$	$\boldsymbol{q}_{\boldsymbol{u}} = \frac{\boldsymbol{Q}_{\boldsymbol{U}.\boldsymbol{L}}}{\boldsymbol{b} \boldsymbol{d}}$
	$q_{cu} = 0.75 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{\delta}_c}}$	$q_{cu} = 0.24 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{\delta}_c}}$
	$q_{umax} = 2.20 \sqrt{\frac{\mathbf{f}_{cu}}{\breve{o}_c}}$	$q_{umax} = 0.70 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{\delta}_c}}$
	$q_u - \frac{q_{cu}}{2} = \frac{n A_s \left(\frac{\mathbf{f}_y}{\mathbf{\delta}_s} \right)}{\mathbf{b} S}$	$q_u - \frac{q_{cu}}{2} = \frac{n A_s \left(\frac{\mathbf{f}_y}{\mathbf{\delta}_s} \right)}{\mathbf{b} S}$
	$= \frac{n A_s}{b S} \ge \frac{0.4}{f_y}$	$= \frac{n A_s}{b S} \ge \frac{4.0}{f_y}$
	$\frac{A_{sb}}{bS} = \frac{q_{sub}}{(\mathbf{f}_y/\delta_s)(\sin \alpha + \cos \alpha)}$	$\frac{A_{sb}}{bS} = \frac{q_{sub}}{(\mathbf{f}_y/\mathbf{\delta}_s)(\sin \alpha + \cos \alpha)}$
	Where: b&d (cm)	Where: b&d (mm)
	<i>Q_{U.L.}</i> (Kg)	$Q_{U.L.}$ (N)
	q_u, q_{cu}, q_{umax} (Kg\cm ²)	q_u, q_{cu}, q_{umax} (N/mm ²)
	A_s (cm ²)	A_s (mm ²)
	$\mathbf{f}_{cu} \& \mathbf{f}_y (Kg \setminus cm^2)$	$\mathbf{f}_{ou} \& \mathbf{f}_{y} (N \setminus mm^2)$

	Metric System	S I
Check Shear + Torsion	$ \begin{array}{r} q_{tu} = \frac{M_{tu}}{2A_{o}te} \\ q_{tu} = \frac{M_{tu}(x_{1}+y_{1})}{0.85(x_{1}^{2}+y_{1}^{2})} For R-sec. \end{array} $	
	$q_{tu} = 0.19 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{d}_c}}$	$q_{tu}_{min} = 0.06 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{\delta}_c}}$
	$q_{tu} = 2.20 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{\delta}_c}}$	$q_{tu} = 0.70 \sqrt{\frac{\mathbf{f}_{cu}}{\mathbf{d}_c}}$
$A_{str} = \frac{M_{tu} S_t}{1.7 x_1 y_1 (\mathbf{f}_y/\delta_s)}$		$\frac{M_{tu} S_t}{x_1 y_1 (\mathbf{f}_y / \mathbf{\delta}_s)}$
	$A_{sl} = 2A_{str}$	$\frac{(\boldsymbol{x_{1}}+\boldsymbol{y_{1}})}{S_{t}} \left(\frac{\mathbf{f}_{y \ str.}}{\mathbf{f}_{y \ L.b.}}\right)$
	Where:	Where:
	$x_1, y_1 \& S_t$ (cm)	$x_1, y_1 \& S_t$ (mm)
		<u><i>M_{tu}</i> (mm.N)</u>
	q_{tu}, q_{tu} (Kg\cm ²)	$\boldsymbol{q}_{tu_{min}}, \boldsymbol{q}_{tu_{max}}$ (N\mm ²)
	A_{str} , A_{sl} (cm ²)	A_{str} , A_{sl} (mm ²)
	$\mathbf{f}_{cu} \& \mathbf{f}_{y} (Kg \setminus cm^2)$	f _{cu} & f _y (N\mm ²)

SI units — U.S. Customary units

يوجد حاليا فى معظم دول العالم نوعان من الوحدات :

۱_ النظام الحديث (SI) و هو حاليا النظام العالمى (System International) و هو حاليا النظام المالمى (System International) و هذا هو النظام المستخدم فى مصر حاليا .

٢ - النظام الانجليزى و هو النظام الغالب ايضا فى امريكا ٠

(British units or U.S. Customary units.) و يسمى

و يستخدم F 🖧 Ib, in & F

1 Kg ≃ 2.20 lb	و الاسوار للتذك	1 N
1 in ≃ 2.54 cm	و ۱۶ منگل للکادر	<u>1 m</u>

1 N	<i>∼ 0.225</i> lb	
1 m	<i>≃ 39.37</i> in	

للتحويل بين النظامين

و الجدول التالى يوضح كيفيه التحويل من النظام SI الى U.S. Customary

	SI	U.S. Customary
	Newton (N)	Pounds (Ib)
Concentrated	1 N ~	0.225 lb
Load	kilo Newton (kN)	kilo Pound (Kip)
	<mark>1</mark> kN ≃	0.225 Kips
Meter (M)		Feet (ft)
	1 m ≃ 3.28 ft	
	centimeter (CM)	inch (in)
Length	<u>1</u> cm	<i>• 0.39</i> in
2.54 cm ≃ 1 in		≤ 1 in
Γ	<u>Meter (m)</u>	yard (yd)
	1 m ≏	<i>1.094</i> yd

	S I	U.S. Customary
Distributed Load (W)	$\frac{\mathcal{U} \ kN/m}{L}$	W Kip/Ft
		$\simeq 0.068$ lb/ft $\simeq 0.068$ Kip/ft
	/ KIN/111 =	
Bending Moment	M	M
(<u>M</u>)	عند حساب الاحمال (kn.m)	عند حساب الاحمال (Kip.ft) <u>M</u>
	فى معادلات التصميم (N.mm) M	M (Ib.in) فى معادلات التصميم (Ib.in)
	<mark>1</mark> kN.m ≏	≤ 0.737 Kip.ft
	1 N.m 🛥	≤ 8.85 lb.in
	عند حساب الاحمال (m) b, d & t	عند حساب الاحمال (ft) b, d & t (ft)
Dimensions of sections.	1 m 🖻	≤ 3.28 ft
	فى معادلات التصميم (mm) b, d & t	فى معادلات التصميم (in) b, d & t
	<mark>1</mark> mm ≏	≤ 0.04 ft
	mm²	in ²
Area of	<mark>1</mark> mm² ≤	<mark>≍ 0.00155 in²</mark>
Steel Bars	الطريقه المستخدمه لتصنيف اقطار حديد التسليح مختلفه تماما فى النظام الامريكى •	
(A _s)		حیث الوحدہ تقاس بـ (\ () بوصه
	EX. $1 \not = 16$ mm	a 🗸
	$A_s = \frac{\pi * 16^2}{4} = 201 \text{ mm}^2$	$A_s = \frac{\pi * (\frac{5}{8})^2}{4} = 0.306 \text{ in}^2$
Area	kN∖m²	lb/in ²
Distributed Load	1 kN\m² =	≃ 0.145 lb/in ²

	S I	U.S. Customary
Stress	N\mm ² <u>–</u> MPa – <u>Mega</u> Pascal	lb/in ² <i>=</i> Psi
	/ N\mm ² ≏	= 0.145 Ksi
	1 N\mm² ≏	= 145 Psi
	EX. $\mathbf{f}_{cu} = 25$ N/mm ² =	<mark>≃ 3625 Psi</mark>
	EX. $\mathbf{f}_y = 360 \mathrm{N} \mathrm{mm}^2 \simeq$	<mark>≃ <i>52.2</i> Ksi</mark>
		عند توصيف الحديد نوصفه بـ Ksi و ع و فى جميع الاحوال يجب استخدام Si
Density	kN/m ³	lb/ft ³
2010009	1 kN/m ³ ≃ 6.24 lb/ft ³	
	EX. $\delta_c = 25.0 \text{ kN/m}^3 \simeq 156 \text{ lb/ft}^3$	
	EX. $\delta_{wall} = 18.0 \text{ kN/m}^3 \simeq$	<u>≤ 112</u> lb/ft ³
modules of	For Concrete	For Concrete
Elasticity	$E_c = 4400 \sqrt{f_{cu}} (N \text{ mm}^2)$	
(<u>E</u>)	For Steel $E_8 = 2 \times 10^5$ (N\mm ²)	For Steel $E_8 = 290 \times 10^5$ (Psi)
المقاومه المبيزه للخرسانه chrasaristics	\mathbf{f}_{cu} (N\mm ²) = (MPa)	\mathbf{f}_{cu} (lb/in ²) = (Psi)
strength (<mark>f</mark> cu)	20 25 30 35 40 45	2900 3625 4350 5075 5800 6525
اجعاد الخضوع أو اجعاد الضمان	\mathbf{f}_{y} (N\mm ²) = (MPa)	\mathbf{f}_{y} (N\mm ²) = (MPa)
للحديد	st. 240\350 f y = 240 (N\mm	²) ~ <u>34800</u> (Psi)
yield stress or proof stress	st. 360\520 fy = 360 (N\mm	²) ~ 52200 (Psi)
(f _y)	st. 400\600 $f_y = 400$ (N\mm	²) ~ 58000 (Psi)

	S I		U.S. Customary	
Rebars	رقم السيخ هو قطر السيخ بال mm		رقم السيخ هو قطر السيخ بالـ in لکن مقسوم علی ۸	
	<i>EX. 1¢</i> 16 → <i>Diameter</i> = 16 mm		EX. $35 \rightarrow Diameter = \frac{5}{8}$ in	
	$A_{s} = \frac{\pi * 16^{2}}{4} = 201 \text{ mm}^{2}$		$A_{8} = \frac{\pi * (\frac{5}{8})^{2}}{4} = 0.306 \text{ in}^{2}$	
	Ø	As	*	As
	Ø 6	28.2 mm ²	* 2	0.049 in ²
	Ø 8	50.3 mm ²	<mark>* 3</mark>	0.110 in ²
	Ø 10	78.5 mm ²	×4	0.196 in ²
	Ø 12	113 mm ²	※5	0.306 in ²
	Ø 16	201 mm ²	× 6	0.441 in ²
	Ø 18	254 mm ²	※7	0.601 in ²
	Ø 20	314 mm ²	8 %	0.785 in ²
	Ø 22	380 mm²	※ 9	0.994 in ²
	Ø 25	490 mm ²	×10	1.227 in ²
	<i>\$ 28</i>	615 mm ²	<u>×11</u>	1.485 in ²
	Ø 32	804 mm ²	×12	1.767 in ²